Skip to main content



Spring MongoDB Rest API not returning response in 90 seconds which is leading to client timeout

 

We have Spring Boot  Rest API deployed in Kubernetes cluster which integrates with MongoDB to fetch the data. 

MongoDB is fed with data by a real time Spark & NiFi job. 

Our clients complained that for a request what they send they don't have response within 90 seconds. Consider it like an OMS ( Order ManagEment System). 


On further analysis, we found that Spark & NiFi processing is happenning within 10 seconds after consuming response data from Kafka. Thus, initally out thought was that it due to delay from upstream to produce data in to Kafka. 


Thankfully, our data had create / request  timestamp, and when response was received, and when response was inserted into MongoDB.

Subtracting response insert time from request time seemed to be well within 90 seconds. But, still client did timeout on not seeing a response within 90 seconds. This led to confusion on our side. 


But, then we realized it was due to Read Preference. We updated this to secondaryPreferred which led to above stated behaviour, as we wished to have traffic balanced in our mongodb cluster.

We realized that it takes some time internally for MongoDB to actually repliacte data to all nodes in the cluster. When configuring our application to read from secondary (replica) nodes, we get eventual consistency by default. This means a secondary node might not yet have the latest write operation from the primary due to replication lag. 


To solve this we can define Read Concern and Write Concern, to enforce higher levels of consistency. That comes with performance cost.

Other way to solve above for us was to use primaryPreferred. By default, reads and writes to the primary node in a replica set are strongly consistent. Updates to a single document are always atomic.

Comments

Popular posts

Spring MongoDB Rename field with derived Value of another field

Input Collection -  [ { 'k' : 'Troubleshooting' , 'hour' : '2024-10-10T16' , 'v' : [ 'WebPage, Login' ] }, { 'k' : 'TroubleshootingMe' , 'hour' : '2024-10-07T01' , 'v' : [ 'Accounts, etc' ] }  ] Expected Output -  [ { 'hour' : '2024-10-10T16' , 'Troubleshooting' : [ 'WebPage, Login' ] }, { 'hour' : '2024-10-07T01' , 'TroubleshootingMe' : [ 'Accounts, etc' ] }  ]   Above Can be achieved by  $replaceRoot / $replaceWith as follows - { $replaceWith : { $mergeObjects : [ { hour : "$hour" }, { "$arrayToObject" : [ [ { k : "$k" , v : "$v" } ] ] } ] } } or { $replaceRoo...




Spark MongoDB Connector Not leading to correct count or data while reading

  We are using Scala 2.11 , Spark 2.4 and Spark MongoDB Connector 2.4.4 Use Case 1 - We wanted to read a Shareded Mongo Collection and copy its data to another Mongo Collection. We noticed that after Spark Job successful completion. Output MongoDB did not had many records. Use Case 2 -  We read a MongoDB collection and doing count on dataframe lead to different count on each execution. Analysis,  We realized that MongoDB Spark Connector is missing data on bulk read as a dataframe. We tried various partitioner, listed on page -  https://www.mongodb.com/docs/spark-connector/v2.4/configuration/  But, none of them worked for us. Finally, we tried  MongoShardedPartitioner  this lead to constant count on each execution. But, it was greater than the actual count of records on the collection. This seems to be limitation with MongoDB Spark Connector. But,  MongoShardedPartitioner  seemed closest possible solution to this kind of situation. But, it per...




Experience with MongoDB and Optimizations

  Experience with MongoDB and Optimizations Before reading below. I would like to point out that this  experience  is related to version  6.0.14-ent, having 6 shards, each shard having 3 machines, each machine is VM with 140 GB RAM and 2TB SSD. And, we had been hosting almost 36 TB of data. MongoDB is not good with Big Data Joins and/ or Big Data OLAP processing. It is mainly meant for OLTP purposes.  Instead of joining millions of keys between 2 collections. It is better to lookup data of one key from one collection then lookup it in other collection. Thus, merging data from 2 collection for same key. Its better to keep De-normalized data in one document.  Updating a document later is cumbersome.  MongoDB crash if data is overloaded. And, it has long downtime if crashed unlike other databases which fails write to database if disk space achieves certain limit. Thus, keeping database active and running for read traffic. MongoDB needs indexes for fast qu...




Spring MongoDB Log Connection Pool Details - Active, Used, Waiting

  We couldn't find any direct way to log Mongo Connection pool Size. So, we did implement an indirect way as below.  This may be incorrect at times when dealing with Sharded MongoDB having Primaty & Secondary nodes. Because, connection may be used based on read prefrence - Primary, primaryPreferred, Secondary, etc. But, this gives an understanding if connections are used efficiently and there is no wait to acquire connections from pool. This can be further enhanced to log correct connection pool statistics.  1) Implement  MyConnectionPoolListener  as below -  import java.util.concurrent.atomic.AtomicInteger; import org.slf4j.Logger; import org.slf4j.LoggerFactory; import com.mongodb.event.ConnectionCheckOutFailedEvent; import com.mongodb.event.ConnectionCheckOutStartedEvent; import com.mongodb.event.ConnectionCheckedInEvent; import com.mongodb.event.ConnectionCheckedOutEvent; import com.mongodb.event.ConnectionClosedEvent; import com.mongodb.event.Conne...




Spark Streaming with Kafka Leading to increase in Open File Descriptors ( Kafka )

  Open File Descriptors w.r.t Kafka brokers relates with following -  number of file descriptors to just track log segment files. Additional file descriptors to communicate via network sockets with external parties (such as clients, other brokers, Zookeeper, and Kerberos). For # 1 this is formula -  (number of partitions)*(partition size / segment size) Reference -  https://docs.cloudera.com/cdp-private-cloud-base/7.1.6/kafka-performance-tuning/topics/kafka-tune-broker-syslevel-file-descriptors.html For #2, every connection made my consumer or producer or zookeeper or  Kerberos  opens file descriptors. Note that each TCP connection creates 2 file descriptors. These connections can be for internal communication of heartbeat, or  security handshake , or data transfer to or from client (producer or consumer) When we run a Spark application integrating it with  Kafka . And, if it is not stable, meaning -  Streaming window for micro batches is les...