Skip to main content



Installing Hadoop 2.x cluster with multiple nodes

1) Follow steps as below
We are going to set up 3 node cluster for Hadoop to start with follow below steps as written in http://techdevins.blogspot.com/2015/12/installing-single-node-hadoop-220-on.html
1) Prerequisite
2) Add Hadoop Group and User
3) Setup SSH Certificate
4) Disabling IPv6
5) Install/ Setup Hadoop
6) Setup environment variable for hadoop
7) Login using hduser and verify hadoop version

** Please make sure to complete the steps only till step 7)

2) Networking
Update /etc/hosts on each of 3 boxes and add below lines:
172.26.34.91    slave2
192.168.64.96   slave1
172.26.34.126   master

3) SSH access
Setup ssh in every node such that they can communicate with one another without any prompt for password. Since you have followed step 1) on every node. ssh keys has been setup. What we need to do is right now is to access slave1 and slave 2 from master. So, we just have to add the hduser@master’s public SSH key (which should be in $HOME/.ssh/id_rsa.pub) to the authorized_keys file of hduser@slave1 and hduser@slave2(in this user’s $HOME/.ssh/authorized_keys)

$ ssh-copy-id -i ~/.ssh/id_rsa.pub hduser@slave1
$ ssh-copy-id -i ~/.ssh/id_rsa.pub hduser@slave2
$ chmod 0600 ~/.ssh/authorized_keys

4) Configuration for master node

cd /usr/local/hadoop/etc/hadoop/
$ vi slaves
Add below entries...
master
slave1
slave2

$ vi hdfs-site.xml

<property>
 <name>dfs.replication</name>
 <value>2</value>
 <description>Default block replication.The actual number of replications can be specified when the file is created. The default is used if replication is not specified in create time.</description>
</property>

<property>
 <name>dfs.namenode.name.dir</name>
 <value>file:/home/hduser/hadoopdata/hdfs/namenode</value>
 <description>Determines where on the local filesystem the DFS name node should store the name table(fsimage). If this is a comma-delimited list of directories then the name table is replicated in all of the directories, for redundancy.</description>
</property>

<property>
 <name>dfs.datanode.address</name>
 <value>0.0.0.0:60010</value>
 <description>The datanode server address and port for data transfer.</description>
</property>

<property>
 <name>dfs.namenode.secondary.http-address</name>
 <value>0.0.0.0:60090</value>
 <description>The secondary namenode http server address and port.</description>
</property>

<property>
 <name>dfs.namenode.secondary.https-address</name>
 <value>0.0.0.0:60091</value>
 <description>The secondary namenode https server address and port.</description>
</property>

<property>
 <name>dfs.datanode.http.address</name>
 <value>0.0.0.0:60075</value>
 <description>The datanode http server address and port.</description>
</property>


<property>
 <name>dfs.datanode.ipc.address</name>
 <value>0.0.0.0:60020</value>
 <description>The datanode ipc server address and port.</description>
</property>

<property>
 <name>dfs.namenode.http-address</name>
 <value>0.0.0.0:60070</value>
 <description>The address and the base port where the dfs namenode web ui will listen on.</description>
</property>


<property>
 <name>dfs.datanode.data.dir</name>
 <value>file:/home/hduser/hadoopdata/hdfs/datanode</value>
 <description>Determines where on the local filesystem an DFS data node should store its blocks. If this is a comma-delimited list of directories, then data will be stored in all named directories, typically on different devices. Directories that do not exist are ignored.</description>
</property>

$vi core-site.xml

<property>
  <name>hadoop.tmp.dir</name>
  <value>/home/hduser/tmp</value>
  <description>Temporary Directory.</description>
</property>

<property>
  <name>fs.defaultFS</name>
  <value>hdfs://master:54310</value>
  <description>Use HDFS as file storage engine</description>
</property>

<property>
<name>hadoop.proxyuser.hduser.hosts</name>
    <value>*</value>
</property>

<property>
     <name>hadoop.proxyuser.hduser.groups</name>
     <value>*</value>
</property>

$ vi yarn-site.xml

<property>
 <name>yarn.nodemanager.aux-services</name>
 <value>mapreduce_shuffle</value>
</property>

<property>
<name>yarn.log-aggregation-enable</name>
<value>true</value>
</property>

<property>
<name>yarn.nodemanager.aux-services.mapreduce.shuffle.class</name>
<value>org.apache.hadoop.mapred.ShuffleHandler</value>
</property>

<property>
 <name>yarn.nodemanager.localizer.address</name>
 <value>${yarn.nodemanager.hostname}:9040</value>
</property>

<property>
 <name>yarn.nodemanager.webapp.address</name>
 <value>${yarn.nodemanager.hostname}:9042</value>
</property>

<property>
 <name>yarn.resourcemanager.scheduler.address</name>
 <value>master:9030</value>
</property>

<property>
 <name>yarn.resourcemanager.address</name>
 <value>master:9032</value>
</property>

<property>
  <name>yarn.resourcemanager.webapp.address</name>
  <value>master:9088</value>
</property>

<property>
  <name>yarn.resourcemanager.resource-tracker.address</name>
  <value>master:9031</value>
</property>

<property>
  <name>yarn.resourcemanager.admin.address</name>
  <value>master:9033</value>
</property>

<property>
  <name>yarn.nodemanager.vmem-check-enabled</name>
  <value>false</value>
</property>

<property>
  <name>yarn.nodemanager.pmem-check-enabled</name>
  <value>false</value>
</property>


$ mapred-site.xml

<property>
 <name>mapreduce.jobtracker.address</name>
 <value>master:54311</value>
 <description>The host and port that the MapReduce job tracker runs at. If .local., then jobs are run in-process as a single map and reduce task.</description>
</property>

<property>
 <name>mapreduce.shuffle.port</name>
 <value>13564</value>
 <description>Default port that the ShuffleHandler will run on. ShuffleHandler is a service run at the NodeManager to facilitate transfers of intermediate Map outputs to requesting Reducers.</description>
</property>

<property>
 <name>mapreduce.framework.name</name>
 <value>yarn</value>
 <description>The framework for running mapreduce jobs</description>
</property>

<property>
 <name>mapreduce.jobhistory.address</name>
 <value>0.0.0.0:10030</value>
 <description>MapReduce JobHistory Server IPC host:port</description>
</property>

<property>
 <name>mapreduce.jobhistory.webapp.address</name>
 <value>0.0.0.0:18888</value>
 <description>MapReduce JobHistory Server Web UI host:port</description>
</property>

<!--property>
    <name>mapreduce.map.memory.mb</name>
    <value>4096</value>
</property>

<property>
    <name>mapreduce.reduce.memory.mb</name>
    <value>8192</value>
</property-->

<property>
    <name>mapreduce.map.java.opts</name>
    <value>-Xmx3072m</value>
</property>

<property>
    <name>mapreduce.reduce.java.opts</name>
    <value>-Xmx6144m</value>
</property>


<!--property>
    <name>mapred.child.java.opts</name>
    <value>-Xmx3072m</value>
</property>

<property>
    <name>io.sort.mb</name>
    <value>512</value>
</property-->

$ vi hadoop-env.sh
# The java implementation to use.
export JAVA_HOME=/usr/lib/jvm/jdk

5) Configuration for slave machines (slave1 and slave2)

$ vi mapred-site.xml
<property>
 <name>mapreduce.jobtracker.address</name>
 <value>master:54311</value>
 <description>The host and port that the MapReduce job tracker runs at. If .local., then jobs are run in-process as a single map and reduce task.</description>
</property>


<property>
 <name>mapreduce.shuffle.port</name>
 <value>13564</value>
 <description>Default port that the ShuffleHandler will run on. ShuffleHandler is a service run at the NodeManager to facilitate transfers of intermediate Map outputs to requesting Reducers.</description>
</property>


<property>
 <name>mapreduce.framework.name</name>
 <value>yarn</value>
 <description>The framework for running mapreduce jobs</description>
</property>

<property>
 <name>mapreduce.jobhistory.address</name>
 <value>0.0.0.0:10030</value>
 <description>MapReduce JobHistory Server IPC host:port</description>
</property>

<property>
 <name>mapreduce.jobhistory.webapp.address</name>
 <value>0.0.0.0:18888</value>
 <description>MapReduce JobHistory Server Web UI host:port</description>
</property>

<!--property>
    <name>mapreduce.map.memory.mb</name>
    <value>4096</value>
</property>

<property>
    <name>mapreduce.reduce.memory.mb</name>
    <value>8192</value>
</property-->

<property>
    <name>mapreduce.map.java.opts</name>
    <value>-Xmx3072m</value>
</property>

<property>
    <name>mapreduce.reduce.java.opts</name>
    <value>-Xmx6144m</value>
</property>

<!--property>
    <name>mapred.child.java.opts</name>
    <value> -Xmx1073741824</value>
</property>

<property>
    <name>io.sort.mb</name>
    <value>512</value>
</property-->

$ vi core-site.xml

<property>
  <name>hadoop.tmp.dir</name>
  <value>/home/hduser/tmp</value>
  <description>Temporary Directory.</description>
</property>

<property>
  <name>fs.defaultFS</name>
  <value>hdfs://master:54310</value>
  <description>Use HDFS as file storage engine</description>
</property>


<property>
<name>hadoop.proxyuser.hduser.hosts</name>
    <value>*</value>
</property>

<property>
     <name>hadoop.proxyuser.hduser.groups</name>
     <value>*</value>
</property>

$ vi yarn-site.xml

<property>
 <name>yarn.nodemanager.aux-services</name>
 <value>mapreduce_shuffle</value>
</property>

<property>
<name>yarn.log-aggregation-enable</name>
<value>true</value>
</property>

<property>
<name>yarn.nodemanager.aux-services.mapreduce.shuffle.class</name>
<value>org.apache.hadoop.mapred.ShuffleHandler</value>
</property>

<property>
 <name>yarn.nodemanager.localizer.address</name>
 <value>${yarn.nodemanager.hostname}:9040</value>
</property>

<property>
 <name>yarn.nodemanager.webapp.address</name>
 <value>${yarn.nodemanager.hostname}:9042</value>
</property>

<property>
 <name>yarn.resourcemanager.scheduler.address</name>
 <value>master:9030</value>
</property>

<property>
 <name>yarn.resourcemanager.address</name>
 <value>master:9032</value>
</property>

<property>
  <name>yarn.resourcemanager.webapp.address</name>
  <value>master:9088</value>
</property>

<property>
  <name>yarn.resourcemanager.resource-tracker.address</name>
  <value>master:9031</value>
</property>

<property>
  <name>yarn.resourcemanager.admin.address</name>
  <value>master:9033</value>
</property>

<property>
  <name>yarn.nodemanager.vmem-check-enabled</name>
  <value>false</value>
</property>

<property>
  <name>yarn.nodemanager.pmem-check-enabled</name>
  <value>false</value>
</property>

$ vi hdfs-site.xml

<property>
 <name>dfs.replication</name>
 <value>2</value>
 <description>Default block replication.The actual number of replications can be specified when the file is created. The default is used if replication is not specified in create time.</description>
</property>

<property>
 <name>dfs.namenode.name.dir</name>
 <value>file:/home/hduser/hadoopdata/hdfs/namenode</value>
 <description>Determines where on the local filesystem the DFS name node should store the name table(fsimage). If this is a comma-delimited list of directories then the name table is replicated in all of the directories, for redundancy.</description>
</property>

<property>
 <name>dfs.datanode.address</name>
 <value>0.0.0.0:60010</value>
 <description>The datanode server address and port for data transfer.</description>
</property>

<property>
 <name>dfs.namenode.secondary.http-address</name>
 <value>0.0.0.0:60090</value>
 <description>The secondary namenode http server address and port.</description>
</property>

<property>
 <name>dfs.namenode.secondary.https-address</name>
 <value>0.0.0.0:60091</value>
 <description>The secondary namenode https server address and port.</description>
</property>

<property>
 <name>dfs.datanode.http.address</name>
 <value>0.0.0.0:60075</value>
 <description>The datanode http server address and port.</description>
</property>


<property>
 <name>dfs.datanode.ipc.address</name>
 <value>0.0.0.0:60020</value>
 <description>The datanode ipc server address and port.</description>
</property>

<property>
 <name>dfs.namenode.http-address</name>
 <value>0.0.0.0:60070</value>
 <description>The address and the base port where the dfs namenode web ui will listen on.</description>
</property>


<property>
 <name>dfs.datanode.data.dir</name>
 <value>file:/home/hduser/hadoopdata/hdfs/datanode</value>
 <description>Determines where on the local filesystem an DFS data node should store its blocks. If this is a comma-delimited list of directories, then data will be stored in all named directories, typically on different devices. Directories that do not exist are ignored.</description>
</property>

$ vi hadoop-env.sh
# The java implementation to use.
export JAVA_HOME=/usr/lib/jvm/jdk

6) Formatting the HDFS filesystem via the NameNode
Before we start our new multi-node cluster, we must format Hadoop’s distributed filesystem (HDFS) via the NameNode. You need to do this the first time you set up an Hadoop cluster.To format run

hduser@master:/usr/local/hadoop$ bin/hadoop namenode -format
...
...

7) Start hadoop services
hduser@master:~$ start-dfs.sh
hduser@master:~$ start-yarn.sh
hduser@master:~$ mr-jobhistory-daemon.sh start historyserver

8) Check master , slave1 and slave2 if all java processes are running or not. Also open http://master:9088/cluster/nodes to see if it shows 3 nodes.

Comments

Popular posts

Spring MongoDB Rename field with derived Value of another field

Input Collection -  [ { 'k' : 'Troubleshooting' , 'hour' : '2024-10-10T16' , 'v' : [ 'WebPage, Login' ] }, { 'k' : 'TroubleshootingMe' , 'hour' : '2024-10-07T01' , 'v' : [ 'Accounts, etc' ] }  ] Expected Output -  [ { 'hour' : '2024-10-10T16' , 'Troubleshooting' : [ 'WebPage, Login' ] }, { 'hour' : '2024-10-07T01' , 'TroubleshootingMe' : [ 'Accounts, etc' ] }  ]   Above Can be achieved by  $replaceRoot / $replaceWith as follows - { $replaceWith : { $mergeObjects : [ { hour : "$hour" }, { "$arrayToObject" : [ [ { k : "$k" , v : "$v" } ] ] } ] } } or { $replaceRoo...




Spark MongoDB Connector Not leading to correct count or data while reading

  We are using Scala 2.11 , Spark 2.4 and Spark MongoDB Connector 2.4.4 Use Case 1 - We wanted to read a Shareded Mongo Collection and copy its data to another Mongo Collection. We noticed that after Spark Job successful completion. Output MongoDB did not had many records. Use Case 2 -  We read a MongoDB collection and doing count on dataframe lead to different count on each execution. Analysis,  We realized that MongoDB Spark Connector is missing data on bulk read as a dataframe. We tried various partitioner, listed on page -  https://www.mongodb.com/docs/spark-connector/v2.4/configuration/  But, none of them worked for us. Finally, we tried  MongoShardedPartitioner  this lead to constant count on each execution. But, it was greater than the actual count of records on the collection. This seems to be limitation with MongoDB Spark Connector. But,  MongoShardedPartitioner  seemed closest possible solution to this kind of situation. But, it per...




Experience with MongoDB and Optimizations

  Experience with MongoDB and Optimizations Before reading below. I would like to point out that this  experience  is related to version  6.0.14-ent, having 6 shards, each shard having 3 machines, each machine is VM with 140 GB RAM and 2TB SSD. And, we had been hosting almost 36 TB of data. MongoDB is not good with Big Data Joins and/ or Big Data OLAP processing. It is mainly meant for OLTP purposes.  Instead of joining millions of keys between 2 collections. It is better to lookup data of one key from one collection then lookup it in other collection. Thus, merging data from 2 collection for same key. Its better to keep De-normalized data in one document.  Updating a document later is cumbersome.  MongoDB crash if data is overloaded. And, it has long downtime if crashed unlike other databases which fails write to database if disk space achieves certain limit. Thus, keeping database active and running for read traffic. MongoDB needs indexes for fast qu...




Spring MongoDB Log Connection Pool Details - Active, Used, Waiting

  We couldn't find any direct way to log Mongo Connection pool Size. So, we did implement an indirect way as below.  This may be incorrect at times when dealing with Sharded MongoDB having Primaty & Secondary nodes. Because, connection may be used based on read prefrence - Primary, primaryPreferred, Secondary, etc. But, this gives an understanding if connections are used efficiently and there is no wait to acquire connections from pool. This can be further enhanced to log correct connection pool statistics.  1) Implement  MyConnectionPoolListener  as below -  import java.util.concurrent.atomic.AtomicInteger; import org.slf4j.Logger; import org.slf4j.LoggerFactory; import com.mongodb.event.ConnectionCheckOutFailedEvent; import com.mongodb.event.ConnectionCheckOutStartedEvent; import com.mongodb.event.ConnectionCheckedInEvent; import com.mongodb.event.ConnectionCheckedOutEvent; import com.mongodb.event.ConnectionClosedEvent; import com.mongodb.event.Conne...




Spark Streaming with Kafka Leading to increase in Open File Descriptors ( Kafka )

  Open File Descriptors w.r.t Kafka brokers relates with following -  number of file descriptors to just track log segment files. Additional file descriptors to communicate via network sockets with external parties (such as clients, other brokers, Zookeeper, and Kerberos). For # 1 this is formula -  (number of partitions)*(partition size / segment size) Reference -  https://docs.cloudera.com/cdp-private-cloud-base/7.1.6/kafka-performance-tuning/topics/kafka-tune-broker-syslevel-file-descriptors.html For #2, every connection made my consumer or producer or zookeeper or  Kerberos  opens file descriptors. Note that each TCP connection creates 2 file descriptors. These connections can be for internal communication of heartbeat, or  security handshake , or data transfer to or from client (producer or consumer) When we run a Spark application integrating it with  Kafka . And, if it is not stable, meaning -  Streaming window for micro batches is les...